|
[ چهارشنبه 28 بهمن 1394 ] [ 08:46 ب.ظ ] [ امید اشکانی ]
جدول تناوبی عنصرهای شیمیایی ، نمایش جدولی عنصرهای شیمیایی بر پایهٔ عدد اتمی، آرایش الکترونی و ویژگیهای شیمیایی آنها است. ترتیب جایگیری عنصرها در این جدول از عدد اتمی (شمار پروتونهای) کمتر به سوی عدد اتمی بالاتر است. شکل استاندارد این جدول ۱۸ × ۷ است؛ عنصرهای اصلی در بالا و دو ردیف کوچکتر از عنصرها در پایین جای دارد. میتوان این جدول را به چهار مستطیل شکست، این چهار بلوک مستطیلی عبارتند از: بلوک اس در سمت چپ، بلوک پی در راست، بلوک دی (فلزات واسطه) در وسط و بلوک اف (فلزات واسطهٔ داخلی) در پایین. ردیفهای این جدول، دوره و ستونهای آن، گروههای جدول تناوبی نام دارند. همچنین گاهی برخی از این گروهها نامهای ویژهای دارند. برای نمونه گروه هالوژنها و گازهای نجیب از آن جملهاند. هدف از ساخت جدول تناوبی، چه به شکل مستطیلی و چه به شکلهای دیگر، بررسی بهتر ویژگیهای شیمیایی عنصرها بوده است. این جدول، کاربرد زیادی در دانش شیمی و پردازش رفتار عنصرها دارد. جدول تناوبی با نام دیمیتری مندلیف شناخته شده است، با اینکه پیشروان دیگری پیش از او وجود داشتهاند. او این جدول را در سال ۱۸۶۹ منتشر کرد. این، نخستین جدولی بود که به این گستردگی مرتب شده بود. مندلیف این جدول را تهیه کرد تا ویژگیهای دورهای آنچه که بعدها «عنصر» نام گرفت را بهتر نشان دهد. وی توانسته بود برخی ویژگیهای عنصرهایی که هنوز کشف نشده بود را پیشبینی کند و جای آنها را خالی گذاشته بود. کمکم با پیشرفت دانش، عنصرهای تازهای شناسایی شد و جای خالی عنصرها در جدول پُر شد. با شناسایی عنصرهای نو و گسترش شبیهسازیهای نظری دربارهٔ رفتار شیمیایی مواد، جدول آن روز مندلیف بسیار گستردهتر شده است. همهٔ عنصرهای شیمیایی از عدد اتمی ۱ (هیدروژن) تا ۱۱۸ (آناناکتیوم) شناسایی یا ساخته شدهاند. دانشمندان هنوز به دنبال ساخت عنصرهای پس از آناناکتیوم هستند و البته این پرسش را پیش رو دارند که عنصرهای تازهتر چگونه جدول را اصلاح خواهند کرد. همچنین ایزوتوپهای پرتوزای بسیاری هم در آزمایشگاه ساخته شده است. همهٔ نسخههای جدول تناوبی تنها دربردارندهٔ عنصرهای شیمیایی هستند و مخلوط، ترکیب یا ذرهٔ زیراتمی در آنها جایی ندارد.[پ ۱] هر عنصر شیمیایی یک عدد اتمی یکتا دارد و این عدد برابر با شمار پروتونها در هستهٔ اتم آن عنصر است. اتمهای گوناگون یک عنصر میتوانند شمار نوترونهای متفاوتی داشته باشند. در این حالت به آنها ایزوتوپ گفته میشود. برای نمونه کربن سه ایزوتوپ طبیعی دارد. همهٔ ایزوتوپهای کربن ۶ پروتون، و بیشتر آنها ۶ نوترون دارند؛ اما یک درصد آنها ۷ نوترون و شمار بسیار کمتری از آنها ۸ نوترون دارند. ایزوتوپها در جدول تناوبی به صورت جداگانه، نمایش داده نمیشوند؛ بلکه میانگین آنها به عنوان جرم اتمی در زیر عنصر درج میشود. برای عنصرهایی که هیچ ایزوتوپ پایداری ندارند، جرم اتمی پایدارترین یا متداولترین ایزوتوپ آنها درون پرانتز نوشته میشود. در جدول تناوبی استاندارد عنصرها به ترتیب عدد اتمی (شمار پروتونها در هسته)، به صورت صعودی مرتب شدهاند. هر ردیف تازه در جدول، که یک دوره یا تناوب نامیده میشود، با افزوده شدن نخستین الکترون به یک لایهٔ الکترونی تازه آغاز میشود. عنصرهایی که در یک ستون جدول (گروه) جای گرفتهاند، همگی در لایهٔ آخر الکترونی خود دارای تعداد الکترونهای برابر هستند؛ به عبارت دیگر آرایش الکترونی لایهٔ آخر آنها یکسان است. مانند اکسیژن و سلنیم که هر دو در یک ستون هستند و هر دو چهار الکترون در لایهٔ بیرونی آرایش الکترونی خود یعنی تراز p دارند. عنصرهایی که ویژگیهای شیمیایی مشابه دارند، معمولاً در یک گروه از جدول قرار میگیرند. اما در بلوک f عنصرهایی که در یک دوره هستند نیز ویژگیهای مشابهی را نشان میدهند. در نتیجه به آسانی میتوان ویژگیهای شیمیایی یک عنصر را با آگاهی از عنصرهای پیرامونیاش پیشبینی کرد. تا سال ۲۰۱۵، جدول تناوبی ۱۱۸ عنصر داشته است که ۱۱۴ عنصر به صورت رسمی از سوی اتحادیه بینالمللی شیمی محض و کاربردی پذیرفته و نامگذاری شدهاند. ۹۸ عنصر از مجموع ۱۱۸ عنصر در طبیعت یافت میشوند و از آن میان، ۸۴ مورد، عناصر پایدار یا دارای نیمعمر بیش از سن زمین هستند. در حالی که ۱۴ عنصر باقیمانده نیمعمر کوتاهی دارند یا به عبارت دیگر پرتوزا هستند. در حال حاضر، این عناصر تنها بر اثر انجام واکنش هستهای در عناصر دیگر به وجود میآیند و فراوانی ناچیزی دارند. تمام عنصرهای با عدد اتمی ۹۹ تا ۱۱۲ (که مابین اینشتینیم و کوپرنیسیم قرار دارند) و نیز دو عنصر فلروویوم و لیورموریوم، در طبیعت پدید نیامدهاند، بلکه در آزمایشگاه ساخته شدهاند. سپس آیوپاک آنها را به طور رسمی پذیرفتهاست. گزارش شده که عنصرهای ۱۱۳، ۱۱۵، ۱۱۷ و ۱۱۸ هم در آزمایشگاه ساخته شدهاند، اما هنوز آیوپاک آنها را تأیید نکردهاست. برای همین، این عنصرها هنوز بر پایهٔ عدد اتمیشان شناخته میشوند. تاکنون عنصری سنگینتر از کالیفرنیم (عنصر ۹۸) در طبیعت به صورت خالص در اندازهٔ قابل مشاهده، پیدا نشده است. تا سال ۲۰۱۵ هنوز عنصری با عدد اتمی بزرگتر از ۱۱۸ ساخته نشده است. عناصر در جدول تناوبی به صورت عمودی در دورههای ۱ تا ۷ و به صورت عمودی در گروههای ۱ تا ۱۸ دستهبندی میشوند. همچنین دستهبندی دیگری بر اساس لایهٔ الکترونی در حال پر شدن وجود دارد که بر اساس آن، عناصر در بلوکهای s و p و d و f قرار میگیرند.
بر اساس یک قرارداد جهانی، گروهها از ۱ تا ۱۸ شمارهگذاری شدهاند که گروه شمارهٔ یک را نخستین گروه از چپ (فلزهای قلیایی) و آخرین گروه را گروه نخست از راست (گازهای نجیب) در نظر گرفتهاند.در گذشته، شمارهٔ گروهها را با عددهای رومی نشان میدادند. همچنین در آمریکا برای گروههای بلوک اس و پی یک حرف A و برای عنصرهای بلوک دی یک حرف B در کنار شمارهٔ رومی گروه میگذاشتند. برای نمونه گروه چهار به صورت IVB و گروه چهاردهم (یا عنصرهای گروه کربن) به صورت IVA نمایش داده میشد. در اروپا هم همین روش به کار میرفت، با این تفاوت که حرف A برای گروههای پیش از گروه ۱۰ و حرف B برای عنصرهای گروه ۱۰ و گروههای پس از آن بکار میرفت. در سال ۱۹۸۸ آیوپاک سامانهٔ نامگذاری تازهای را پیشنهاد کرد و روشهای پیشین همگی فراموش شد. ویژگیهای عنصرهای یک گروه مانند شعاع اتمی، انرژی یونش و الکتروندوستی
مشابه یکدیگر هستند. از بالا به پایین، شعاع اتمی عنصرها افزایش مییابد،
در نتیجه الکترونهای لایهٔ آخر در فاصلهٔ دورتری از هسته جای میگیرند،
چون ترازهای انرژی بیشتری پُر شدهاند. از بالا به پایین، انرژی یونش کاهش
مییابد. چون الکترونها کمتر به هسته پیوند خوردهاند و آسانتر میتوان
آنها را جدا کرد. با تحلیل مشابه، از بالا به پایین الکتروندوستی عنصرها
کاهش مییابد. چون فاصلهٔ میان الکترونهای لایهٔ آخر و هسته افزایش
مییابد.البته در این میان استثناهایی هم وجود دارد. برای نمونه در گروه ۱۱ الکتروندوستی از بالا به پایین افزایش مییابد. یک دوره در جدول تناوبی، یک ردیف افقی از این جدول است. با اینکه عنصرها در یک گروه همانندیهای بسیاری دارند، اما بخشهایی از دورهها هستند که از اهمیتی بیش از گروهها برخوردارند. مانند بلوک F، جایی که لانتانیدها و آکتینیدها دو مجموعهٔ افقی از عنصرهای جدول را میسازند.
عنصرها در یک دوره همانندیهایی از لحاظ شعاع اتمی، انرژی یونش، الکتروندوستی و الکترونخواهی (مقدار انرژی آزاد
شده هنگامی که یک الکترون به یک مولکول یا اتم خنثی افزوده میشود) از خود
نشان میدهند. در یک دوره از چپ به راست، شعاع اتمی کاهش مییابد. این
پدیده، به این دلیل است که با افزایش عدد اتمی در یک دوره، شمار لایههای
الکترونی ثابت است، اما شمار پروتونها افزایش مییابد. برای همین
الکترونها بیشتر به سوی هسته کشیده میشوند. کاهش شعاع اتمی باعث افزایش انرژی یونش میشود (از چپ به راست). هرچه
پیوندها در یک عنصر محکمتر باشد، انرژی بیشتری هم برای جداسازی یک الکترون
نیاز است. الکتروندوستی مانند انرژی یونش رفتار میکند و از چپ به راست افزایش مییابد. چون کشش هسته بر روی الکترونها افزایش مییابد. همچنین مقدار الکترونخواهی هم در طول یک دوره اندکی تغییر میکند. فلزها
(عنصرهای سمت چپ دوره) معمولاً نسبت به نافلزها (سمت راست دوره)
الکترونخواهی پایینتری دارند. این قانون برای گازهای نجیب برقرار نیست. چون لایهٔ آخر الکترونی از اهمیت ویژهای برخوردار است، جدول تناوبی به بخشهایی وابسته به این لایههای الکترونی تقسیم شده است. به هر یک از این بخشها یک بلوک میگویند.بلوک اس دربردارندهٔ دو گروه نخست جدول (فلزهای قلیایی و قلیایی خاکی) و دو عنصر هیدروژن و هلیم است. بلوک پی دربردارندهٔ شش گروه آخر جدول، گروههای ۱۳ تا ۱۸ آیوپاک (۳A تا ۸A در نامگذاری آمریکایی) است. همهٔ شبهفلزات و نافلزها در این بلوک جای میگیرند. بلوک دی دربردارندهٔ گروههای ۳ تا ۱۲ آیوپاک (۳B تا ۸B در نامگذاری آمریکایی) و همهٔ فلزات واسطه است. بلوک اف که بیشتر در پایین بدنهٔ اصلی جدول جای میگیرد دربردارندهٔ لانتانیدها و اکتینیدها است. آرایش الکترونی عنصرهای جدول، الگویی تکرار شونده دارند. الکترونها در هر عنصر، مجموعهای از لایههای الکترونی را پُر میکند. هر لایهٔ الکترونی از یک یا چند زیرلایه ساخته شده است که به آنها لایههای s و p و d و f و g گفته میشود. هر چه عدد اتمی یک عنصر افزایش یابد، لایهها و زیرلایههای الکترونی بیشتری در آن عنصر پُر میشود. این لایهها بر پایهٔ اصل آفبا یا قانون تراز انرژی پر میشوند (همانند نموداری که کشیده شده است). برای نمونه، آرایش الکترونی نئون با عدد اتمی ۱۰ عبارت است از: 1s2 2s2 2p6 که دو الکترون در لایهٔ نخست و هشت الکترون در لایهٔ دوم (دو تا در زیرلایهٔ s و شش تا در زیرلایهٔ p) جای میگیرد. برای نمونه، فلزهای قلیایی و عنصر هیدروژن، همگی تنها یک الکترون در لایهٔ اس دارند.
ویژگیهای یک عنصر بیشتر به آرایش الکترونی آن عنصر وابسته است.
درنتیجه، چون آرایش الکترونی عنصرها در جدول از نظم روشنی پیروی میکند،
میتوان برخی رفتارهای فیزیکی و شیمیایی عنصرها در جدول را پیشبینی کرد.
در نمودار سمت راست، به برخی از این رفتارها اشاره شده است. پیش از آنکه نیلز بور نظریه خود پیرامون آرایش الکترونی را مطرح کند، از روی این ویژگی پلهکانی عنصرها، جای برخی از عنصرها در جدول پیش بینی شده بود. طبقه بندی: برچسب ها: جدول تناوبی عنصرهای شیمیایی، دنبالک ها: بانک اطلاعات مهندسی مواد و متالورژی، [ چهارشنبه 28 بهمن 1394 ] [ 11:51 ق.ظ ] [ امید اشکانی ]
عناصر گروه دوم جدول تناوبی که به فلزات قلیایی خاکی معروفند در لایه ظرفیت الکترونی ، دارای آرایش nS2 هستند. آخرین عنصر این گروه یعنی رادیوم ، رادیواکتیو است. این فلزات سطحی درخشان و رنگ نقرهای سفید دارند. دارای واکنشپذیری بالایی هستند. اما واکنشپذیری این گروه به اندازه فلزات قلیایی (گروه I) نیست. ![]() استخراجفلزات قلیایی خاکی در پوسته زمین یافت میشوند. اما نه بصورت فلز آزاد بلکه بعلت فعالیت بالا بصورت ترکیب در کانیها و سنگهای مختلف. کلسیم ، پنجمین عنصر فراوان در پوسته زمین و منیزیم هشتمین عنصر فراوان در پوسته زمین است. کانیهای مهم منیزیم عبارتند از: کارنیت ، منیزیت و دولومیت. منیزیم از آب دریا
هم استخراج میشود. با افزودن هیدروکسید کلسیم به آب دریا هیدروکسید
منیزیم کم محلول بصورت رسوب تهنشین میشود. این رسوب بعد از تبدیل به کلرید منیزیم در سلول الکتروشیمیایی داونز الکترولیز میشود تا منیزیم فلزی بدست آید. منابع عمده کلسیم ، کالک ، سنگ آهک ، ژیپس ( سنگ گچ ) بیآب است.
خواص فیزیکیاین فلزات سختتر و چگالتر از فلزات گروه اول هستند. دمای ذوب بالایی دارند. این خواص آنها تا حد زیادی ناشی از وجود دو الکترون در لایه ظرفیت است که پیوندهای قویتری از فلزات گروه I ایجاد میکنند. منیزیم ، کلسیم ، استرانسشیم و باریم از این گروه در اثر حرارت در شعله ایجاد رنگ میکنند.
![]() خواص شیمیاییاز بالا به پایین این فلزات ، الکتروپزیتیوتر میشوند. واکنش با
اکسیژن و کلر شدید است. تمام فلزات بجز بریلیم در دمای اتاق در معرض هوا
اکسید شده و رنگشان تیره میشود. بریلیم بعلت واکنشپذیری بالا در زیر نفت نگهداری میشود. همه فلزات این گروه بجز بریلیم آب و اسیدهای ضعیف را به هیدروژن کاهش میدهند. ![]() منیزیم بکندی با آب واکنش میدهد مگر اینکه آب داغ باشد. ولی کلسیم بشدت در دمای اتاق با آب واکنش داده و سوسپانسیون ابری سفیدی از هیدروکسید کلسیم تولید میکند. کلسیم ، استرانسیم و باریم در اثر حرارت با هیدروژن ترکیب شده و آنرا به فرم هیدرید احیاء میکند. ![]() فلزات این گروه در اثر گرم شدن عامل احیاء کننده قوی برای احیاء نیتروژن به فرم نیترید هستند . منیزیم در CO2 سوخته و آنرا به کربن احیاء میکند. یعنی آتش منیزیم با CO2 خاموش نمیشود. اکسیداکسید این فلزات به فرمول عمومی MO بوده و یک اکسید بازی است و از حرارت کربنات یا هیدروکسید این فلزات با آزاد کردن CO2 تولید میشود. اکسید این فلزات انرژی شبکه و دمای ذوب بالایی دارند. بجز بریلیم بقیه دارای فرم پراکسید MO2 هم هستند، چون کاتیون Be+2 برای ایجاد پراکسید بسیار کوچک است. اکسیدهای کلسیم ، استرانسیم ، باریم با آب واکنش داده و هیدرو اکسید تولید میکنند. هیدروکسید کلسیم که به آب آهک معروف است، بطور نسبی در آب محلول بوده و یک محلول بازی متوسط میدهد که برای شناسایی گاز CO2 بکار میرود. هالیدهالیدهای این گروه از فلزات به فرم هیدراته یافت میشوند. بجز کلرید
بریلیم ، همگی ترکیب یونی هستند. کلرید کلسیم بیآب میل شدیدی به جذب آب دارد و بعنوان خشک کننده استفاده میشود.
حالت اکسیداسیونفلزات قلیایی خاکی در تمام ترکیباتی که تشکیل میدهند حالت اکسیداسیون
+2 دارند. بجز چند استثنا همه ترکیبات آنها یونی است. این فلزات دو
الکترون در لایه آخر دارند که از دست دادن آنها نسبتا آسان است. اما
برداشتن الکترون سوم بسیار مشکل است و به انرژی بالایی نیاز دارد، زیرا تحت
جاذبه شدید هسته بوده و از لایه هشت تایی کامل برداشته میشود. بنابراین
کاتیون این فلزات به فرم M+2 است.
اطلاعات صنعتیاز میان فلزات این گروه فقط منیزیم بطور گسترده تولید میشود.از این فلز ، بدلیل داشتن شعله سفید و درخشان در ترکیب منومرها ، فشفشهها و گلولههای نورانی ردیاب و بمبهای آتشزا استفاده میشود. منیزیم با آلومینیوم
آلیاژی با دانسیته پایین و دوام بالا ایجاد میکند که در صنایع
هواپیماسازی کاربرد دارد. اکسید منیزیم بدلیل دمای ذوب بالا در بدنه
کورهها استفاده میشود. منبع : دانشنامه رشد . ( در ذکر مطالب خود در سایت ها همواره منبع خود را ذکر کنید چرا که کاری است بسیار پسندیده.) طبقه بندی: فلزات غیر آهنی، متالورژی استخراجی، خواص فیزیکی مواد، آزمایشگاه مواد، متالورژی و هنر، برچسب ها: مهندسی مواد و متالورژی، فلزات قلیایی خاکی، جذول تناوبی عناصر، دنبالک ها: بانک مقالات مهندسی مواد و متالورژی، [ جمعه 16 بهمن 1394 ] [ 10:27 ق.ظ ] [ امید اشکانی ]
ریخته گری در قالب های دائم
مقدمه: قدیمیترین روش شناخته شده ریخته گری فلزات عبارتند از ریختن مذاب فلزات در قالب های ماسه ای و به طور کلی در تمامی این قبیل روش ها مذاب ، تحت نیروی ثقل حفره ی قالب را پر میکند و در حال حاضر هم تحت عنوان ریخته گری ماسه ای خیلی از قطعات مختلف صنعتی تولید میشوند. در کلیه روشها- قالب تماماً از بین رونده بوده و برای یک سیکل ریخته گری قطعه آماده شده و لازم است که برای سیکل بعدی دوباره قالب از نو آماده گردد. برای غلبه بر این شکل اساسی همیشه صنعت گران به دنبال این بودند که بتوانند، قالبی اریه نمایند، که به دفعات زیاد از آن استفاده نموده، ساده ترین آن قالب های دائمی، عبارت اند از انواع مختلف قالب های ثقلی میباشند. که در مقایسه با قطعات ریخته شده به روش ماسه ای کیفیت صافی سطح، تلرانس ابعاد، دید ظاهری و خواص مختلف مکانیکی قطعات ریخته شده در قالب های ثقلی به مراتب با لا تر میباشد و برای بهبود بخشیدن به قطعات و بهتر نمودن کیفیت آنها لازم است از مکانیزم هایی استفاده شود که بتوان مذاب را با فشار به داخل قالب های فلزی، تزریق نماییم. قدیمی ترین مدارک فنی در این مربوط است به سالهای 1894 تا 1877که از دستگاه های ساده ای یاد آوری شده که مذاب آلیاژ سرب یا قلع را توسط مکانیزم سیلندر و پیستون به داخل حفره ی قالب با فشار های پایین تزریق مینمایند. به علت پایین بودن نقطه ذوب آلیاژهای سرب و قلع ، مشکلات فنی چندانی در به کارگیری مکانیزم تزریق و یا انتخاب مواد مناسب برای سیلندر و پیستون وجود نداردو. اما اگر بخواهیم این مکانیزم را برای آلیاژهایی که دارای نقطه ذوب بالا از قبیل AL ، MG ، CU ، و روی به کارببریم با مسائل برطرف شده است. بعد از آلیاژ های سرب و قلع قدم بعدی در مورد آلیاژ های روی برداشته شده است. چون نقطه ذوب این آلیاژ ها حدود 390 درجه سانتیگراد در مقایسه با سرب 3330 درجه و قلع 230 درجه در مقام بعدی قرار گرفته و مشکلات ناشی از طریق مذاب خیلی حاد نخواهد بود . خواص مکانیکی آلیاژ های روی به مراتب از سرب و قلع بالاتر است. پس آلیاژ های قلع و سرب وروی نوبت به الیاژ های AL خواهیم رسید. که هم نقطه ذوب بالاست حدود 700 درجه و هم خواص مکانیکی آن به مراتب بهتر است. قطعات دایکاست آلومینیومی به صورت انبوه از سالهلی 1915 تولید گردیده و آن زمان قطعات مختلف ، تجهیزات جنگ افزار ها برای کارخانجات نظامی تولید میکردند. امروزه روش ریخته گری تحت فشار الیاژ های آلومینیومی ا زنظر جاافتاده ای میباشد. به طوری که در اکثر رشته های صنایع، از قطعات دایکاست آلومینومی به وجود می آیند . الیاژ های منیزیم نیز در صنعت ریخته گری تحت فشار دایکاست به کار میرود. و چون نقطه ذوب آن در حدود نقطه ذوب AL میباشد. لذا مشکلات چندانی به وجود نخواهد امد. دایکاست منیزیم تولید میشوند. پس از آلیاژ های AL و MG صنعت آلیاژمس یا گروه برنج به میان خواهى أمدز نقطه ذوب برنج یا برنز در حدود 900 درجه بوده که با در نظر گرفتن آن مشکلات فراوان فنی و متالورژیکی در تزریق مذاب و یا انتخاب مواد مناسب برای قالب دائمی وجود دارد. و امروزه پاره ای ازآن مشکلات و میائل حل شده است . و برای خیلی از آلیاژ های مختلف مس نتوانسته اند روش عملی ریخته گری تحت فشار را ارایه نمایند. علی رغم مشکلات فراوان در ریخته گری برنج باز قطعات به طور انبوه و اقتصادی تولید میشوند. که در بعضی از این قطعات استحکام بالایی به آن داده شده است. در مقایسه با سایر روشهای و سوم ریخته گری روش دایکست رشد بالایی داشته به طوری که در فاصله ی زمانی خیلی کم از بکارگیری دستگاه ساده ایراد شده برای تزریق سرب و قلع با کمک چند تقسیم و کاملاً دستی به سطح عالی ترازوی، دستگاه های کامل تری و با یک نفر اپراتور به تعداد 300 الی 500 قطعه در هر ساعت ترقی کرده است. روشهای ساخت: در تولید انبوه بیش ترسیمس در استفاده از روشی است که قطعات با صرف کمترین هزینه مواد، نیروی انسانی و زمان کاری تهیه شود. شکل گیری و شکل دادن در جه ی اول جزء این روشها به شما ر میرود( شکل2 صفحه ی 1) با این روش میتوان قطعات پیچیده ای به روش بدون براده برداری و در یک مرحله کاری با دقت شکلی و دقت اندازه درست تولید کرد. در این روش به ماشین کاری بعدی نیاز چندانی نیست. غالباً میتوان در یک مرحله کاری چند قطعه را با هم تولید کرد. در اجرای این روش ها قالب ها، ماتریس ها و قالب های انها بسته و به طور کلی قالب های دائمی به کار میرود. اگر ماده ی بی شکل مایع، چقرمگی و یا خمیری باشد به ریخته گری موسوم است. چنانچه ماده ی بی شکل دانه ای یا پودری باشد به تف جوشی معروف است. روشهای ریخته گری در قالب های دائمی محدودیت های زیر را داراست: 1 – اگر چه حد ماکسیمی برای اندازه ی ابعاد قطعه . ولی این روش برای تولید قطعات کوچک عملیتر است. 2- همه ی آلیاژ های برای ریخته گری در قالب دائمی مناسب نیستند. 3- ای روش برای تولید قطعات به تعداد کم مقرون به صرفه نیست و هزینه ی زیاد در چنین شرایطی انتخاب این روش را منع میکند. 4- تولید برخی از قطعات به واسطه ی محل قرار گرفتن خط جدایش و دشواری خارج ساختن قطعه از قالب با استفاده از این روش امکانپذیر نیست. ریخته گری در قالب های فلزی : ریژه( کوکیل) در این روش مذاب فلزات غیر اهنی به کمک نیروی وزن یا با فشار کم در قالب های دائم چند پارچه ریخته میشود . قالب هایفلزی ریخته گری از فولاد ، یا چدن ریختگی ویژه هستند. متناسب با اندازه قطعه ریختگی تعداد 30000 تا 60 هزار قطعه کا را میتوان با هر قالب فلزی ریخته گری کرد. قالب های فلزی ریخته گری ممکن است تمام فلز بوده و یا نیمه های قالب های فلزی و ماهیچه از ماسه باشد ( قالب های فلزی ریخته گری مرکب) قطعات تولیدی با قالب های فلزی دقت ابعادی بالا ، کیفیت سطحی خوب و ساختار دانه ریز دارند. با قالب های فلزی نیز میتوان قطعات پیچیده "، صنایع موتور سازی ، فولاد سازی و ماشین سازی مانند پوسته های جعبه دنده و سر سیلندر در تیراژ بالا به طور اقتصادی تهیه کرد. انواع قالب های فلزی ریژه : قالب های فلزی انواع گوناگونی دارند از جمله قالب های فلزی 1- ساده2-کشویی 3- لولایی 4-با اجزای محرکه مکانیکی 5- با اجزای محرکه هیدرولیکی ( شکلهای 4،1،2،صفحه 1) 1- قالب های فلزی با یک بست رکابی به یک دیگر بسته میشوند، پس از انجماد مذاب بست را باز کرده و به این ترتیب نیمه های قالب از یکدیگر جدا و قطعه کار خارج میشود. 2-در قالب های فلزی کشویی نیمه های قالب بر روی یک صفحه بازو های راهنمایی موازی قرار گرفته . این بازوها رها راهنمای کار با قالب های فلزی بزرگتر زا آسان تر میکنند 3- قالب های فلزی لولایی کار را ساده تر کرده که دو نیمه اتصال آنها که یک لولا است بازو بسته شده که فقط این نوع قالب برای قطعات تخت مناسب هستند.4- قالب های فلزی ریخته گری بزرگتر با اجرایی محرکه مکانیکی به کار میرود. در این قالب ها یکی از نیمه های قالب ثابت و دیگری متحرک بوده، که جابجایی آن به وسیله یک میله محور( پیچ و مهره) انجام میشود. اتصال نیمه های قالب، موقع ریخته گری با بست قلاب دار جانبی حفظ میشود. یک اهرم زاویه دار ماهیچه را باز کرده و سپس بیرون کشیده میشود.5- قالب فلزی با اجزای محرکه هیدرولیکی بیش تر در تولید انبوه به کار میرود. که برای جابجا کردن نیمه های قالب و یا ماهیچه ها از سیلندر های هیدرولیکی که با کنتری شیرها انجام میشود. میتوان نیمه های قالب و ماهیچه هائرا جابجا نمود. ماشین های ریخته گری برای سطح جدایش افقی: سطح جدایش قالب های گفته شده در یک صفحه عمودی قرار دارند. که این سطح جدایش مهم ترین وضعیت برای باز کردن قالب و خارج ساختن قطه ریختگی است. اما برخی قطعات با داشتن یک سطح جدایش در یک صفحه افقی بهتر ریخته میشود. اغلب ماشین های ریخته گری که دارای سطح جدایش افقی هستند با یک مکانیزم گردان تجهیز شده اند. به طوری که ذوب ریزی در موقعی که سطح جدایش به صورت افقی قرار دارد، انجام میگیرد. و سپس موقعیت قالب با چرخش تغییر کرده و امکان خارج ساختن قطعه در حالی که سطح جدایش در صفحه قائم است وجود دارد. در بعضی از قطعات ذوب ریزی دز حالی که سطه جدایش در صفحه افق است آغاز شده و سپس الی که این عمل تداوم یافته و کامل میشود، چرخش آرام قالب نیز انجام میگیرد. به عنوانمثال به منظور ریخته گری یک قالب برای ماشین کاری اگر ذوب ریزی در شرایطی که سطح جدایش به صورت عمودی صورت میگرفت، مذاب به عمق زیادی در داخل قالب سقوط کرده، و این ریزش از ارتفاع زیاد، پاشیدن مذاب و ایجاد یک جریان متلاطم و غیر قابل قبول را به دنبال خواهد داشت. برای جاوگیری از سقوط مذاب به داخل این عمق زیاد یک قالب چرخان در یک ماشین ریخته گری مورد استفاده قرار میگیرد بدین ترتیب امکان ذوب ریزی در قالب تحت شرایطی که سطح جدایش به صورت افقی قرار داشته به وجود خواهد آمد. بخش اعظم ذوب ریز تحت این شرایط انجام و مابقی وقتی که قالب 90 چرخنده تا سطح جدایش به صورت عمودی قرار میگیرد. این فرایند به آرامی صورت میگیرد. قطه در این زمان خمیده شده و از قالب خارج میشود. ماشین های ریخته گری با صفحات گردان: قطعه های ریخته گری کوجک و سبک وزن میتوانند از طریقه ی دستی ریخته شده از قالب خارج شود اما با بالاترین درجه حرارت ذوب ریزی و افزایش وزن قطعات ریختگی روش دستی دشوار میگردد. در این موقع روش عمل باید خودکار باشد. این امر اغلب با بکارگیری ماشین های ریخته گری که بر روی صفحه گردان نسب شده است صورت میپذیرد. یک نمونه ی معمول از ضفحات گردان مورد استفاده که شامل 12 ماشین ریخته گری است در شکل 7 صفحه 2 است. یک دور گردش کامل 2 الی 7 دقفیقه به طول میانجامد. مراحل مختلف این روش ریخته گری که شامل ذوب ریزی ، پوشش دادن قالب، جاگذاری ماهیچه ها ، انجماد و خارج ساختن قطعه است. در ضمن عبور ماشین ریخته گری از چندین توقف گاه انجام عملیات به طور کامل صورت میگیرد . اغلب این نوع ماشین ها بدون هیچ گونه هدایتی به طور مداوم و در حال چرخش هستند. این نوع تجهیزات زمانی که همه ی 12 ماشین( 12 قالب) مشابه هم بوده و بالاترین سرعت تولید را به مرحله ی اجرا در میآورد. اما به هر حال قالب های متفاوت را هم در هر کدام از 12 دستگاه میتوان مورد استفاده قرار دارد.- طبقه بندی: ریخته گری، کوره های ریخته گری، برچسب ها: ریخته گری در قالب های دائم، [ یکشنبه 11 بهمن 1394 ] [ 11:05 ب.ظ ] [ امید اشکانی ]
|
|
[ طراح : مهندس امید اشکانی ] [ Design By : Engineer Omid Ashkani ] |